Math 118 – General Education Mathematics Formula Sheet

Logic

p	q	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
\mathbf{T}	T	T	T	T	T
T	F	F	T	F	F
F	Т	F	T	T	F
F	F	F	F	T	\mathbf{T}

Table 1: Truth Tables for conjunction, disjunction, conditional, and biconditional statements.

DeMorgan's Laws: $\begin{array}{l} \sim (p \, \wedge \, q) \equiv \sim p \, \lor \sim q \\ \sim (p \, \lor \, q) \equiv \sim p \, \land \sim q \end{array}$

Conditional as a disjunction: $p \to q \equiv \sim p \vee q$

Negation of Conditional: $\sim (p \rightarrow q) \equiv p \land \sim q$

Converse of $p \to q$: $q \to p$

Inverse of $p \to q$: $\sim p \to \sim q$

Contrapositive of $p \to q$: $\sim q \to \sim p$

Common Translations of $p \rightarrow q$:

 $\begin{array}{lll} \text{If } p, \text{ then } q. & p \text{ is sufficient for } q. \\ \text{If } p, q. & q \text{ is necessary for } p. \\ p \text{ implies } q. & \text{All } p \text{ are } q. \\ p \text{ only if } q. & q \text{ if } p. \end{array}$

Valid argument forms:

Argument Form	Name	Argument Form	Name	
$p \to q$		$p \rightarrow q$		
<u>p</u>	Modus Ponens	$\sim q$	Modus Tollens	
:. q		$\therefore \sim p$		
$p \vee q$		$p \rightarrow q$		
$\sim p$	Disjunctive Syllogism	$\underline{q \rightarrow r}$	Hypothetical Syllogism	
\therefore q		$p \rightarrow r$		

Invalid argument forms:

Argument Form	Name	Argument Fo	orm	Name
$p \to q$		$p \rightarrow q$		
$\frac{q}{\therefore p}$	Fallacy of the Converse	$\frac{\sim p}{\therefore \sim q}$		Fallacy of the Inverse

Counting

Number of Distinguishable Arrangements: $\frac{n!}{n_1!n_2!\cdots n_k!}$, where n is the total number of objects, and n_1, n_2, \dots, n_k are the number of objects of type $1, 2, \dots, k$ with $n_1 + n_2 + \dots + n_k = n$.

Permutation of n objects taken r at a time: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$

Combination of n objects taken r at a time: ${}_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

Permutation/Combination Relation: ${}_{n}P_{r} = r! \cdot {}_{n}C_{r}$

Deck of Cards Breakdown: 52 cards total, with four (13 card) suits (red: \heartsuit , \diamondsuit ; black: \clubsuit , \spadesuit). Cards per suit: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King

Table 2: The layout of a standard deck of cards.

Complement property: $n(A') = n(\mathcal{U}) - n(A)$, where \mathcal{U} is the universal set and $A \subseteq \mathcal{U}$.

Addition Property: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Pascal's Triangle:

Row Number		Row Sum
0 1 2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{0} = 1$ $2^{1} = 2$ $2^{2} = 4$ $2^{3} = 8$ $2^{4} = 16$ $2^{5} = 32$ $2^{6} = 64$ $2^{7} = 128$ $2^{8} = 256$ $2^{9} = 512$ $2^{10} = 1024$
10	1 10 45 120 210 252 210 120 45 10 1	$2^{-1} = 1024$

Figure 1: Pascal's Triangle

Probability

Theoretical probability: $P(E) = \frac{\text{number of times event } E \text{ occurs}}{\text{total number of outcomes}} = \frac{n(E)}{n(S)}$, where S is the sample space, and $E \subseteq S$ is an event in the sample space.

Empirical Probability: $P(E) = \frac{\text{number of times event } E \text{ occurs}}{\text{total number of observations/trials}}$

General Properties: $0 \le P(E) \le 1$; P(E) = 0 is an impossible event (i.e. $E = \emptyset$); P(E) = 1 is a certain event (i.e. E = S).

Complement property: P(A') = 1 - P(A)

Addition Property: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$; alternatively, $P(A \cup B) = P(A) + P(B)$ if and only if A and B are mutually exclusive (i.e. $A \cap B = \emptyset$).

 $\textbf{Conditional Probability: } P(A \mid B) = \frac{n(A \cap B)}{n(B)} = \frac{P(A \cap B)}{P(B)} \text{ and } P(B \mid A) = \frac{n(A \cap B)}{n(A)} = \frac{P(A \cap B)}{P(A)}.$

Multiplication Rule: $P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$. Events A and B are said to be independent if $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$. Therefore, $P(A \cap B) = P(A) \cdot P(B)$ when A and B are independent.

Probability Distribution Properties: (i) $0 \le P(x) \le 1$ for each x value; (ii) $\sum P(x) = 1$ (the sum of all the probabilities must be equal to 1).

Binomial Distribution Function: $f(x) = {}_{n}C_{x} \cdot p^{x} \cdot (1-p)^{n-x}$, where n is the number of trials, p is the probability of a success, and x is the number of successes. Recall that ${}_{n}C_{x} = \frac{n!}{x!(n-x)!}$.

Expected Value: $E(x) = \sum x \cdot P(x) = x_1 P(x_1) + x_2 P(x_2) + \cdots + x_n P(x_n)$.

Expected Value for Binomial Distribution: If x is a binomial random variable, n is the number of trials of the binomial experiment, and p is the probability of success, then E(x) = np.

Statistics

Guidelines for Constructing Grouped Frequency Distributions:

- 1. Make sure each data item will fit into one, and only one, class.
- 2. Try to make all the classes the same width.
- 3. Make sure the classes do not overlap.
- 4. Use from 5 to 12 classes.

Mean:
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum x}{n}$$

Weighted Mean:
$$\overline{w} = \frac{w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum w \cdot x}{\sum w}$$

Position of the Median of Data Set of Size
$$n$$
: $\frac{n+1}{2}$

Range of Data Set: maximum value - minimum value.

Standard Deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$
 or $s = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n(n - 1)}}$.

Chebyshev's Theorem: At least $1 - \frac{1}{k^2}$ of the data lies within k S.D. of the mean, where k > 1

Coefficient of Variation:
$$V = \frac{s}{\overline{x}} \times 100$$
 (for samples); $V = \frac{\sigma}{\mu} \times 100$ (for populations).

Quartiles: Q_1 is the median of the first half of the data set, Q_2 is the median of the data set, Q_3 is the median of the second half of the data set.

Five Number Summary: The five values used to construct box plots are: Min, Q_1 , Q_2 , Q_3 , Max.

Empirical Rule: For normally distributed data, 68% of the data lies within one S.D. of the mean, 95% of the data lies within 2 S.D. of the mean, and 99.7% of the data lies within 3 S.D. of the mean.

z-score:
$$z = \frac{x - \overline{x}}{s}$$
 or $z = \frac{x - \mu}{\sigma}$

Linear Regression: Given data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the equation of the regression line is y' = ax + b where

$$a = \frac{n\left(\sum xy\right) - \left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^2\right) - \left(\sum x\right)^2} \quad \text{and} \quad b = \frac{\sum y - a\left(\sum x\right)}{n}$$

Interpreting r: If $r = \pm 1$, y' is a perfect fit. If r is close to 1 or -1, the line y' is a strong fit. If r is not close to 0 and not close to -1 or 1, y' is a moderate fit. If r = 0 or close to 0, it is a weak fit.